BIOMASS TO ENERGY AND CHEMICALS
HighBio2
(2011-2013)
Overview

- The project is co-financed by the EU Interreg IV A North Program
- The budget of the project is approx. 1.2 M€
- From June 2011 to December 2013

Persons:

Project coordinator:
- Bodil Wikman (Chydenius)

Persons responsible:
- Prof. Ulla Lassi (Chydenius, OY)
- Prof. Jukka Konttinen (JY)
- Ass. Prof. Xiaoyan Ji (LTU)
- Lic. Sc. Kari Pieniniemi (Centria)
Aims of the project

- Based on distributed energy production model
- Utilization of renewable forest biomass
- Development of the gasification process
 - Optimization of gasification process
 - Purification of product gas (syngas)
- Production of biomass-based end products (fuels and chemicals)
- Utilization of by-products of gasification (CO₂, bioash)
Added Value of the Refining of the Forest Biomass

<table>
<thead>
<tr>
<th>Source materials</th>
<th>Thermal treatment</th>
<th>Conversion methods of syngas</th>
<th>Value-added end products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest Biomass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- wood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- forest residues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(crownmass,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>branches, stumps)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- sawdust</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- organic waste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>waste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-product gas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Combined heat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and power (CHP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-syngas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H₂ + CO)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fischer-Tropsch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fermentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By-products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-ash CO₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilization</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Forest industry
- Research

Energy industry
- Development
- Innovations

Chemical industry
- Applications
Research activities

- WP1 – Optimization of the gasification process
- WP2 – Purification of syngas
- WP3 – Utilization of purified syngas and gasification by-products
- WP4 – Information distribution
Expertise of partners

- Centria: Small scale gasification for combined heat and power production (gasifier pilot plant)
- University of Jyväskylä: Mathematic models for gasification
- LTU: Recovery of CO2, Simulation programmes (Aspen Plus)
- Chydenius: Catalytic conversion of biomass-based syngas, analysis of tar compounds
- University of Oulu: Characterization of by-products
WP1

- **Optimization of the gasification process**
 - Improved control of the gasification process
 - temperature, source material, feed rate, etc.
 - Analysis of syngas quality
 - On-line monitoring of gases
 - Tar collection and analysis
 - Evaluation of material and energy balances
 - Experimental data
 - Mathematical models
WP2

- **Purification of syngas**
 - Analysis of syngas and impurities
 - syngas consists primarily of hydrogen (H_2) and carbon monoxide (CO)
 - impurities: particles, metals, halogens, hydrocarbons (tars), etc.
 - even low amounts of impurities may have unfavourable effects e.g. for catalysts
 - Improved purification process
 - scrubbers, fixed-bed adsorbents, catalytic cracking
 - Tar (sampling and) analysis
 - Recovery of CO_2
 - economical reasons
 - amines, ionic liquids
Greenhouse 2011-2013

Possibilities - Example of energy and material integration in the greenhouse
WP3

• Utilization of purified syngas and gasification by-products
 – Production of value-added products
 – Fischer-Tropsch synthesis
 • a catalytic reaction that converts syngas into hydrocarbons
 • selective and active catalysts based of Co and Fe
 • end products: synthetic diesel, other hydrocarbons
 – Optimization of reaction conditions
 • temperature, pressure, gas flow
 – Other catalytic routes
 • mixed alcohol synthesis
 • higher alcohols (e.g. butanol)
 – Utilization of by-products
 • CO₂, bioash
WP4

• Information distribution
 – National and international information distribution
 – INFO sheets in HighBio web page
 – Scientific publications
 – Seminars
Thank You!

More information:
www.chydenius.fi/yksikot/soveltava-kemia